

EXAMPLE 6. A 5 -digit number is divisible by 3 when the sum of its digits is divisible by 3 .

Discussion: This statement can be rewritten as: If the sum of the digits of a 5 -digit number is divisible by 3 , then the number is divisible by 3 . Thus we can separate hypothesis and conclusions and rewrite them as follows:

A: Let n be an integer number with $\mathrm{n}=\mathrm{a}_{4} \mathrm{a}_{3} \mathrm{a}_{2} \mathrm{a}_{1} \mathrm{a}_{0}, 0 \leq \mathrm{a}_{\mathrm{i}} \leq 9$ for all $i=0,1,2,3,4$ and $a_{4} \neq 0$, such that $a_{4}+a_{3}+a_{2}+a_{1}+a_{0}=3 t$, where t is an integer umber.
(The fact that n is an integer number is an implicit hypothesis because the concept of divisibility is defined only for integer numbers).

B: The number n is divisible by 3 ; that is, $\mathrm{n}=3 \mathrm{~s}$ with s integer number.

Proof: As the hypothesis provides information about the digits of the number, we will separate the digits using powers of 10 . Thus

$$
\mathrm{n}=\mathrm{a}_{4} \mathrm{a}_{3} \mathrm{a}_{2} \mathrm{a}_{1} \mathrm{a}_{0}=10^{4} \mathrm{a}_{4}+10^{3} \mathrm{a}_{3}+10^{2} \mathrm{a}_{2}+10 \mathrm{a}_{1}+\mathrm{a}_{0} .
$$

By hypothesis, $a_{4}+a_{3}+a_{2}+a_{1}+a_{0}=3 t$, where t is an integer number. Therefore

$$
\mathrm{a}_{0}=3 \mathrm{t}-\mathrm{a}_{4}-\mathrm{a}_{3}-\mathrm{a}_{2}-\mathrm{a}_{1} .
$$

If we substitute this expression for a_{0} into the expression for n and perform some algebraic steps, we obtain

$$
\begin{aligned}
\mathrm{n} & =10^{4} \mathrm{a}_{4}+10^{3} \mathrm{a}_{3}+10^{2} \mathrm{a}_{2}+10 \mathrm{a}_{1}+\mathrm{a}_{0} \\
& =10^{4} \mathrm{a}_{4}+10^{3} \mathrm{a}_{3}+10^{2} \mathrm{a}_{2}+10 \mathrm{a}_{1}+\left(3 t-\mathrm{a}_{4}-\mathrm{a}_{3}-\mathrm{a}_{2}-\mathrm{a}_{1}\right) \\
& =9,999 \mathrm{a}_{4}+999 \mathrm{a}_{3}+99 \mathrm{a}_{2}+9 \mathrm{a}_{1}+3 t
\end{aligned}
$$

Therefore

$\mathrm{n}=9,999 \mathrm{a}_{4}+999 \mathrm{a}_{3}+99 \mathrm{a}_{2}+9 \mathrm{a}_{1}+3 \mathrm{t}$
$=3\left(3,333 a_{4}+333 a_{3}+33 a_{2}+3 a_{1}+t\right)$.
Because the number $3,333 a_{4}+333 a_{3}+33 a_{2}+3 a_{1}+t$ is an integer, we proved that number n is divisible by 3 .

$$
\begin{aligned}
& \text { 「 بَ بخش پـير است." } \\
& \text { بنابراين ما مىتوانيم فرضيات و نتايج را تفكيك و آنها را باصصورت } \\
& \text { زير بازنويسى كنيم: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (اين حقيقت كه n عددى صحيح اســت، يك فرض ضمنى است، } \\
& \text { زيرا مفهوم بخش پذيرى فقط براى اعداد صحيح تعريف شده است.) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ارقام اين عدد بهدست مىیدهد، ما مى انواهيمه اين اين ارقام را با با استفاده از } \\
& \text { توانهاى • ا تفكيك كنيه. پس: } \\
& n=a_{r} a_{r} a_{r} a_{1} a_{1}=1 \cdot{ }^{r} a_{r}+1 \cdot r a_{r}+1 \cdot{ }^{r} a_{r}+1 \cdot a_{1}+a_{\text {. (1) }} \\
& \text { با توجه به فرض، } \\
& \text { بنابراين: } \\
& a_{.}=\mu t-a_{4}-a_{r}-a_{r}-a_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { داشت: } \\
& n=1 \cdot{ }^{r} a_{r}+1 \cdot{ }^{r} a_{r}+1 \cdot r_{r}+1 \cdot a_{1}+a^{2} \\
& =1 \cdot{ }^{+} a_{r}+1 \cdot{ }^{r} a_{r}+1 \cdot{ }^{r} a_{r}+1 \cdot a_{1}+\left(\Gamma t-a_{r}-a_{r}-a_{r}-a_{r}\right) \\
& =9999 a_{r}+999 a_{r}+99 a_{r}+9 a_{1}+r t \text {. } \\
& \text { بنابراين: } \\
& n=9999 a_{r}+999 a_{r}+99 a_{r}+9 a_{t}+r t \\
& =r\left(\mu \mu \mu a_{r}+\mu \mu \mu a_{r}+\mu r a_{r}+\mu a_{1}+t\right) \text {. } \\
& \text { چون عدد (}
\end{aligned}
$$

لغات و اصطلاحات

1) Digit: رقم
2) Discussion: بحث
3) Rewritte: بازنويسى
4) Hypothesis: فرضيه، فرض
5) Integer number: عدد صحيح
6) Expression: عبارت ـ بسط
7) Divisible: بخشرپزي
8) Statement: عبارت ـ تزاره
9) Separate: جدا كردن، تفكيك كردن
10) Conclusions: نتايج
11) Implicit: ضمنى ـ التزامى
12) Algebraic: جبرى
